Wednesday, May 17, 2017

The Neurological Basis of Design Thinking

Design Thinking;

  • What is it?
  • Who invented it? 
  • Why is it needed? 
  • When would or should you do it? 
  • Where can you learn it? 
  • How is it done? 
These questions, and their answers, point to a deeper set of issues about DT which are rooted in differences in both our vocabulary and points of view which are outgrowths of our brain structure and the ways our tolerance for ambiguity and complexity express themselves in problem solving.

To illustrate this idea, let's build on our current understanding of neurophysiology;

Core to Design Thinking is being Human-Centric. This is an often cited trait of DT, but it is usually mentioned in the context of empathic inquiry. Perhaps more important is the implication that there are humans involved. This is important because humans have brains and those brains work in certain observable and predictable ways. Thanks to real time imaging techniques we've begun to pull back the curtain on how the brain works and how we perceive that activity.

Cross Section of the Human Brain

This remarkable collection of neurons fundamentally operates in three spheres; Cognitive, which we associate with thinking, Emotional, which we associate with feelings and Behavioral which we associate with doing.  Real time scans of neurologic activity in the structures of the Cerebral Cortex, Midbrain and Primitive Brain generally correspond to our experiences of Thinking, Feeling and Doing.

The Design Thinking framework also has three main areas; Humanity, Technology and Business which have their associated expressions of Desirability, Feasibility and Viability.  This correlation isn't accidental. As humans, we use our multifunctional brains to ThinkFeel and Act our way thru the process of learning and problem solving. What is learning but simplifying the complex and clarifying the obscure? (a.k.a Handling "Wickedness")

The DT Triad

Note the three other correlations between these areas in the DT framework;
  • Thinking is about what happens in the Technology space.
  • Feeling/Emotions are at play in the Desirability space.
  • Viability is what is tested and proven in the Busi-ness (action) space.
What sets the DT apart from other approaches is its consideration *all* aspects of the situation; Emotional, Cognitive and Behavioral. It provides a comprehensive "whole brain" framework to uncover and address the known and unknown elements in all three domains when discovering and developing solutions. This point is often overlooked when discussing DT, which leads to a great deal of confusion, particularly when being compared to mainly rational frameworks like the scientific method.

A Circular DT Model

One Pass thru the DT Phases

DT also acknowledges a core aspect of dynamic systems; It takes time to converge on a predictable solution; This has an analog in Control Systems in the concept of Damping or Feedback.

Even with optimum (critical) damping, oscillating systems don't settle in the shortest amount of time until about the third cycle, which is why in we plan for at least three express-test (prototyping) cycles.

Degrees of Feedback vs. Cycles to Settle

Design Thinking's prototyping element addresses the need to manage risk (ambiguity and complexity) by using inexpensive tools to rapidly model ideas and outcomes, thereby discovering errors and problems more quickly. Prototyping also highlights the need to turn customer needs into quantifiable requirements with tolerances as soon as possible.

Rapid Prototyping Tools

The practical implications of this correlation between how your brain works and the Design Thinking framework are powerful and simple;

Thoughts + Emotions + Experience = Deep Learning  

If you have an idea, you have a theory.
If you have an emotion you have a reason to act.
If you have acted, you have first hand knowledge.

Put all this together and you have a comprehensive approach to solving a wide range of problems. Design Thinking brings your full range of mental tools, methods, and actions to the table.

It is also what differentiates DT from other problem solving methods which emphasize analysis, ("scientific") or emotion (the "arts") or "business" (managing people, time and money) to solve (or create) problems.

Design Thinking is using all of your your tri-part brain, to act, feel, and think, in solving problems or create new realities, which increases the quality of your solutions.